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shock diffraction does not occur within the reentrant corner; it also provides
an approximation to the peak vertex pressure which is comparable with experi-
mental results if diffraction does occur. Both regular and Mach reflections are
modeled. When the corner has finite length, an estimate of the duration of the
peak vertex pressure is given. The mmerical simulations are performed with the
ulerian hydrodynamic computer code DORF. In the DORF calculations, the reen-

trant corner is formed by a rigid smooth wall and a rigid stair-step wall. A
detailed discussion of the stair-step construction and comparisons of the
pressure distributions along these walls are included. Furthermore, the
analytical and numerical pressure results for an infinitely long reentrant
corner are compared.
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I. INTRODUCTION

When a shock wave propagates into a concave corner, it is re-
flected one or more times from the walls forming the corner. Upon
reaching the corner, the direction of the shock propagation is reversed,
one or more additional reflections may occur, and, in general, the last
reflected shock is diffracted. These multiple reflections cause signifi-
cant increases in the pressure along the walls as compared with a single
normal reflection. Therefore, such corners may be susceptible to damage
from blast waves that might otherwise cause little or no damage elsewhere
on a structure. Examples of such corners are the wing/body junctions of
aircraft and helicopters.

If the propagation direction of the incident shock lies in the
cross-sectional plane of a reentrant corner and if the corner's width
is "large enough", then a two-dimensional model can be applied near the
mid-plane of the corner. See Figure 1. The purposes of this report
are: (1) to develop an analytical model for the two-dimensional shock
wave propagation into a reentrant corner which can determine the peak
pressure and its duration at the vertex of a corner of a general angle
and for an arbitrary incident strength shock; (2) to simulate the above

phenomenon numerically using the DORF hydrodynamic computer code1 ; and
(3) to validate the results of (1) and (2) by comparing them with shock
tube experiments as well as with each other. By comparing the results
from the analytic model, the numerical calculations, and the experiments,
it is possible to quantify the capabilities and limitations of each.
This is of particular importance relative to the numerical calculations
which, in principle, can simulate more complex flows than any analytic
model and can provide more complete information than any experiment.
However, the reliability of a code in predicting a particular type of
flow field must first be established. This report provides a partial
evaluation of the DORF code as a tool for simulating shock wave propaga-
tion in a reentrant corner. The pressure profile difference along a smooth
boundary versus a stair-step boundary is discussed.

Section 2 of this report describes the shock tube experiments which
were performed at the ARRADCOM Ballistic Research Laboratory (BRL).

The analytic model is described in detail in Section 3. The mathe-
matical problem corresponding to Figure I with the additional assumption
of infinitely long walls has been solved analytically in several special

cases. Lighthill2 considered an arbitrary strength shock propagating
into a corner with an vertex angle 2a which deviated only slightly from

1. Johnson.W.E., "Code Correlation Study", AFWL-TR-70-144, US Air
Force Weapons Laboratory, Kirtland Air Force Base, NM (April 1971).

2. Lighthill, M.J., "The Diffraction of Blast II", Proc. Roy. Soc.,
Series A, Vol. 198, pp 554-65, 1950.

11
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Figure 1. Schematic of Incident Shock in a Concave Corner of Infinite
Width.
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1800. Keller and Blank3 considered weak shock waves (acoustic waves)

propagating into any corner. Later, Keller4 considered the special
cases where no diffractions of the regular reflected shock waves occur

and determined the exact solutions by algebraic means. 
Schniffan et al.

5

considered a series of reentrant corner problems, most of which involved
900 corners. Some of these corners had one finite length wall. For
corners formed at non-right angles, they considered only regular re-
flection within an infinitely long corner and used approximations to the
oblique shock relations in order to obtain estimates of the resulting
pressure field. In Section 3.1, an analytic model is presented and the
extension of the model to simple Mach reflection is made. The only re-
striction on the corner angle and shock strength is that complex and
double Mach reflections do not occur within the corner. Under the as-
sumptions of the analytic model, the flow field within the corner can
be analyzed as a cascading series of step shock reflections, except for
possibly the final reflected shock. The model predicts the propagation
of all the shocks within the corner, determines the type of reflection
occurring at each reflection point within the corner, and calculates the
gas states and shock wave parameters associated with each reflection.
The flow field resulting from a shock wave propagating into an infinite
two-dimensional corner can be solved algebraically provided that the fi-
nal reflected shock is not diffracted as shown by Keller. However, if
any shock is diffracted by either the leading edge of a finite corner or
the final reflection process, no exact analytic treatment is possible.
In these cases, an approximate technique (numerical or analytic) must be
used. The present analytic model provides an exact solution of the-.flow
field if no diffraction oecurs and an approximation of the peak vertex
pressure which is comparable with experimental results if diffraction
occurs. The flow fields behind both weak and moderate strength inci-
dent shock waves propagating into an infinitely long corner are calcu-
lated in Section 3.2. When*he corner has finite length, the rarefaction
wave generated at the leading edge of the corner propagates into the
corner and decreases the maximum vertex pressure. In Section 3.3, a
formula is derived using the results of Section 3.1 to determine the
duration of the peak ivertex pressure in a finite corner.

3. Keller, J.B. and lank, A., "Diffraction and Reflection of Pulses
by Wedges and Corners", Communs. Pure and Appl. Math., Vol. IV,
No. 1, pp. 75-94, 1951.

4. Keller, J.B., "MUltiple Shock Reflection in Corners", Journal of
Applied Physics, Vol. 25, No. S, pp. 558-590, 1954.

S. Schniffman, T., Heyman, R.J., Sherman, A., and Weimer, D., "Pressure
Multiplication in Re-Entrant Corners", in Proceedings of the First
Shock Tube Symposium, Air Force Weapons Center Report No. SWR-Th-
$7-2 (AD467-201), 1957.
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The numerical simulation of a shock wave propagation into a infinite
reentrant corner by the DORF hydrodynamic computer code is described in
Section 4. The DORF code solves a finite difference representation of
the two-dimensional Euler equations in an Eulerian computational grid.
The continuum being modeled is divided into rectangular zones, or cells,
each of which represents a given mass of either pure or mixed material
in a state of thermodynamic equilibrium. The DORF code can model non-
responding cells in the computational flow field. These are used to
construct interior reflecting boundaries and rigid structures. A de-
scription of the DORF algorithm is given in Section 4.1.

The geometry of a general reentrant corner is not easily modeled
with the DORF code. It is necessary to use the two-dimensional Car-
tesian configuration which has a 900 angle between the x and y axes.
One or both of the axes must be modified to model a non-right angle at
the apex of a reentrant corner. Because the code is limited to the
orthogonal Cartesian mesh, this modification can not be done by rotat-
ing the axes. The only means in the current version of DORF by which
this can be accomplished is by stacking non-responding cells along a
boundary to approximate a corner with an angle other than 90 degrees.
DORF does not have the ability to model fractional cells. Consequently,
the modified boundary along which the non-responding cells are stacked
is not smooth, but rather consists of discrete steps. Because the
pressure distributions on the walls forming a reentrant corner are of
specific interest, it is important to determine what effect this stair-
stepping has on the wall loading.

The DORF code has previously been used with stair-stepping to model
.6the sides of a munition magazine , a cross-section of which is a trap#-

zoid. The trapezoidal structure was modeled as a stair-stepped ramp
facing a spherical incident shock wave, followed by a rectangle and an-
other stair-stopped ramp. The geometry used in the simulation was
cylindrically symmetric. The actual ramp angles are 26.2, measured
from the horizontal. The stair-step ramps use one cell per step, each
cell having an aspect ratio Ar/Az = 2. Two calculations, simulating
different incident shock strengths, were performed. On the forward facing
ramp the calculations differ by .13% to +29% from the experimental values,
on the top by -20% to 12%, and on the rearward facing ramp by +37 to
+71%.

The technique of stair-stepping to model inclined surfaces has also

been used in computations with the HULL 7 hydrodynamic computer code at

6. Goodman, H.J., "Calculations of Pressure Over the Surface of a
1/30th Scale Model Munition Magazine", ARBRL-TR-02153, US Army
Ballistic Research Laboratory, Aberdeen Proving Ground, MD (April
1979). (AD #B037702L)

7. Fry, ?.A., Durrett, R.E., Ganong, G.P., Matuska, D.A., Stucker, M.D.,
Chambers, B.S., Needham, C.E., and Westmoreland, C.D., "The HULL
Hydrodynamics Computer Code", APWL-TR-76-183, US Air Force Weapons
Laboratory, Kirtland Air Force Base, NN (Sentember IQ76).

14
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the US Air Force Weapons Laboratory (AFWL). One series of HULL compu-

tations was used to determine the air blast over a dam slope caused by
a nuclear burst on a surface of a reservoir. Here, the stair-stepped

dam slope faces rearward relative to the on-coming shock. The results
appear to be qualitatively reasonable. However, there are no experimental
data with which to compare the results. Another study at AFWL attempts

to determine an optimum stair-step design9 . A discussion of the stair-
step design for the reentrant corner problem as well as a critique of

the AFWL method is given in Section 4.3.

The two examples of shock wave propagation which are calculated in
Section 3.2 using the analytic model are recomputed using the DORF code.
The DORF input values are given in Section 4.2. A comparison of the
pressure profiles along the different walls is made in Section 4.4.

The experimental measurements, the analytic calculations, and the
numerical computations are compared in Section 5. The peak pressure at
the vertex was determined by all three methods and the results are com-
pared in Section 5.1. In the experiments, a rarefaction ware is gener-
ated at the leading edge of the corner which ultimately decreases the
vertex pressure. The values for the duration of the peak pressure mea-
sured by the experiment and determined by the analytic theory are compared
in Section 5.2. The flow field within an infinite corner is modeled

by both the analytic theory and the DORF calculation. The pressure
histories at various stations within the corner are compared in
Section 5.3.

The summary of the results and conclusions are presented in Section
6.

2. EXPERIMENTS

A series of shock tube experiments were performed at the BRL in
which a step shock propagaed in air perpendicularly along a shock tube
wall into a corner having an vertex angle of 500. (See Figure 2.) In
reference to Figure 1, the experiments simulated a symmetrically placed
shock wave into a reentrant corner with a vertex angle of 2a - 100*.
The shock tube wall replaces the plane of symmetry. The wall forming

the corner is 0.166. long and is of sufficiently heavy construction
that its response to the loading is negligible. Two pressure gages
were inserted in the shock tube wall. The gage at the vertex recorded

8. Fry, N.A., Needham, C.E., Stucker, H., Chambers, B.S., III, and

Ganong, G.P., "AFWL HULL Calculations of Air Blast Over a Dam Slope",
AFWL-TR-76-154, US Air Force Weapons Laboratory, Kirtland Air Force

Base, NM (October 1976).
9. Happ, H.J., III, Needham, C.E., and Lunn, P.W., "AWVL HULL Calcu-

lations of Square-Wave Shocks on a Ramp", AFL-TR-77-82, US Air

Force Weapons Laboratory, Kirtland Air Force Base, NN (July 1977).
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Figure 2. Schematic of the Experimental Shock Tube Model.
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the pressure history. Another upstream gage determined the strength of
the incident shock wave. The corner's width (2S4=n) was long enough
to minimize three-dimensional effects.

Oscilloscope pressure-tine records were obtained10 for several ex-
periments. From these records the value of the peak overpressure at the
vertex, its duration and the overpressure decay at the vertex could be
determined. The more relevant experimental data are the pressure peak
and its duration, because the rarefaction wave which causes the pressure
decay is not explicitly modeled by either the analytical model or the
numerical simulation. The estimated accuracy of the overpressure mea-

surements is 5%. The estimated error in the peak pressure duration
measurements is less than 7 ps. A series of four experiments were per-
formed. We shall consider only the weakest incident shock, hereafter
referred to as Shot 1, and the strongest incident shock, hereafter
referred to as Shot 2. The experimental values are summarized in Table
1.

3. ANALYTIC MODEL

3.1 Theory for an Infinite Corner.

The analytic model is based on four assumptions:

a. The incident shock propagates with constant velocity and is
symmetrically placed within the corner at its mid-plane. (See Figure
1.) This hypothesis permits the two-dimensional analysis of a shock
propagating with its velocity vector parallel to the plane of symmetry
(a rigid wall) into a corner which has an acute angle equal to the
bisected angle of the physical corner. This assumption, of course, can
be ignored, if the incident shock front is already propagating perpen-
dicularly to a wall. Because the incident shock velocity is constant,
its propagation can be considered pseudostationary if a frame of refer-
ence is attached to the shock.

b. The medium in which the shock wave propagates is a perfect gas
and has negligible viscosity. The latter part of this assumption excludes
the formation of boundary layers along the wall, and enables us to treat
shock waves as discontinuous surfaces. Following the derivation in

Thompson11 or Courant and Friedrichs12 (see APPENDIX A), the Jump conditions

10. Taylor, W.J., MODUr, BRL, Private communication.
11. Thompson, P.A., Compressible Fluid Dynamics, McGraw-Hill Book Co.,

New York, 1972.
12. Courant, R. and Friedrichs, K.O., Supersonic Flow and Shock Waves,

Vol. 1, Interscience Publishers, Inc., New York, 1948.

17
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across a planar discontinuity can be written as:

v- W) • n - P v 0, (3.1.1)

bb a a
Pb [('vb n] P)• a[(v a. w) n ). Va. rb'  (3.1.2)

vb t - va • t O, (3.1.3)

2,, h.. 0. 5,,-•
n, + ha n a n) w (b v- (3.1.4)

where p, v, P, h, w, n, t are the density, velocity, pressure, specific
enthalpy, the shock wave velocity, the unit outer normal vector to the
shock wave, and the unit tangential vector to the shock wave, respec-
tively. The properties imediately ahead of the shock wave are denoted
by the subscript a and those immediately behind by the subscript b. The
perfect gas assumption postulates an equation of state of the form
h - yP/[(y-l)p] where y is the ratio of two constants (the specific heat
at constant pressure cp and specific heat at constant volume c ). The

sound speed in a perfect gas is given by a - (yP/P) . Equations (3.1.1)
-(3.1.4) are commonly known as the oblique shock relations and are valid
at any point Q on the shock. If the shock is not curved in the immediate
vicinity of Q, then the flow is uniform in this neighborhood and the
flow properties computed at Q by the oblique shock relations are also
valid in this neighborhood.

c. The walls forming the corner are rigid and infinite. The
assumption of wall rigidity is reasonable if the time duration of
the loading is short relative to the response time of the wall. The
infinite extent of the walls eliminates the rarefaction wave which is
generated at the leading edge of the corner and causes the curvature of
some reflected shocks.

d. Only regular and simple Mach reflections occur within the cor-
ner. This restriction is necessary because only these types of reflec-
tions are modeled. The theory of the model identifies the type of shock
reflection and permits one to carry out a corresponding analysis.

The initial conditions for the shock reflection analysis are the
absolute pressure P0 and temperature TO in the undisturbed medium, the

incident shock strength and the angle of the apex 2a. From the initial

19



pressure value and shock strength, the pressure behind the incident shock
can be computed. In a perfect gas, the initial density pO is given by

P0 a Po/(ToR*), where R* is the gas constant, and the initial enthalpy is

given by ho - P/ [(y-1)PO].

The theory for the regular reflection of a shock wave in a perfect

gas from a solid boundary is well known.1 3, 14 Consider a step shock wave
I which is propagating with a constant velocity, is incident at point Q
upon an infinite plane rigid wedge making an angle 0 with the horizontal,w

and causes a regular reflected shock R to arise from the wedge. If we
attach a frame of reference to the point Q, the incident shock velocity
is zero and the flow in region 0 toward I is parallel to the wedge sur-
face. (See Figure 3.) We define the region upstream of I as region 0,
downstream of I and upstream of R as region 1, and downstream of R as
region 2. The properties in regions 0, 1, and 2 are related in a
neighborhood of the reflection point Q. While passing through the inci-
dent shock at an angle of 40* 900 - 8w, the flow is deflected from its

original direction towards I by an angle e1 and its dynamic and thermo-

dynamic properties are changed. These properties are related by the
oblique shock relations (3.1.1)-(3.1.4) in the neighborhood of point Q.
In these circumstances, the oblique shock relations can be simplified
by substituting

4 4 44 4
ua va~ -w, 11b = vb - w

Ua 9 n -u 0 sin 0ub , n = u, sin (*0 - el) ,

ua * t u0 cos *0u - u 1 cos (0- el),

and can be rewritten using the equivalent (AlO) instead of (3.1.4) as:

plUl sin(#0 - 81) = o0uo sin #of (3.1.5)

P1 + pl[ul sin (#0 el)]2 a P0 + P0 [u 0 sin *012, (3.1.6)

u1 cos (#0 " 81) Z u 0 Cos 0' (3.1.7)

h I  0.5[u1 sin (#0- 01)]2 a h0 0.S[u0 sin ,0]2, (3.1.8)

13. Bleakney, W. and Taub, A.H., "Interaction of Shock Waves", Review
of Modern Physics, 21, pp. 584-605, 1949.

14. Polachek, H. and Seeger, R., "Shock Wave Interactions" in Funda-
uentals of Gas emnics, H.W. Emons, Ed., Princeton UniveFtW
P'ress, pp. 494-504, 1958.
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where we define ui = 1*iI. Equations (3.1.S)-(3.1.8) represent a system

of four nonlinear algebraic equations with four unknowns, u0 O. u1

and 61, because h, - yP1 /[(y-l)P 1 ]. The solution of this system is

obtained easily, and the explicit formulas for the unknowns are derived
in the APPENDIX B. These formulas determine the flow in region 1 and
are independent of the type of reflection occurring at the point Q.

The flow deflection across the incident shock causes the flow in
region 1 in the neighborhood of Q to approach the reflected shock oblique-
ly at an angle #I' While passing through the reflected shock R, the flow

is deflected towards it by an angle 02 from its region 1 trajectory and

its dynamic and thermodynamic properties are altered. These properties
are related by the oblique shock relations (3.1.1)-(3.1.4) in the

neighborhood of Q. In this case, the velocities are
-I + 40 4 .
ua V n = u1 sin l, b n a u2 sin (41 - 62),

+4 0 41_
ua t a uI Cos 41 ub • t a u 2 cos (# 192).

In order that the resulting flow in region 2 adjacent to the wall be
parallel to the wall in the neighborhood of Q, the deflection angles
must be equal, that is, 62 a e,. In this framework both 01 and 62 are

positive angles and the difference in deflection direction is incorporated
in the formulation. The oblique shock relations for the reflected
shock R can be written in the form:

P2u2 sin (1 - 01) - p1 u sin #1, (3.1.9)

u2 cos (1 - 01) z u I cos 41, (3.1.10)

P2 
+ P2 [u 2 sin (1- 01)] = P1  P[Ul sin #1] 2, (3.1.11)

h 2 + O.S[u 2 sin (#1- 0 61)2 h I  O.S [u I sin 1] 2 . (3.1.12)

In this system of equations, pl, uls P1, hl and 0 I e known. Thus,

equations (3.1.9)-(3.1.12) represent four nonlinear equations in P2 P

P2. u2, and *l when the enthalpy h2 is expressed in terms P2 and P2.
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The solution to this system cannot be obtained by explicit formulas.

Instead the solution can be obtained nuerically by using the ItEL

subroutine ZSYSTM. (ZSYSTh solves a system of N simultaneous nonlin-

ear equations in N unknowns by using Brown's technique1 6.)

The described method determines the entire flow field in the
neighborhood of Q in a shock-fixed coordinate system from the given
initial conditions. Performing a simple transformation of the veloc-
ities gives the solution in the laboratory coordinate system. Further-
more, this flow configuration can be verified experimentally for a class
of incident shock strengths and wall angles. For large incident angles
I and/or strong shocks, the equation system may not have a solution.

such cases a so-called "Mach reflection" takes place.

The theory of single Mach reflections from a solid boundary is dis-
cussed in References 14, 17, and 18. We extend this theory to include
the case of an incident shock propagating into a nonquiescent region.
Consider a step shock wave I which is incident upon a plane rigid wall
that makes an angle 0w with the horizontal, and which causes a Mach re-

flection to arise on the wall. The gas velocity ahead of the shock wave
is towards I and is parallel to the wedge. The frame of reference is
attached to the triple point Z. (See Figure 4.) The incident shock I,
reflected shock R, and the Mach stem M emanate from Z as does the slip-
line. The trajectory of Z is a straight line with angle X between it and
the wall surface. The region upstream of I and M is denoted by region
0, upstream of R and downstream of I by region 1, downstream of R by
region 2, and downstream of M by region 3. The slipline divides regions
2 and 3 which have equal pressures and equal flow directions with differ-
ent speeds in this reference frame. We correlate the properties in these
four regions in the imediate vicinity of the triple point. In this
shock-fixed coordinate system, the incident shock velocity is zero and
the gas velocity in region 0 relative to the wall velocity is parallel
to the wall surface. The portion of the flow in region 0 hich passes
through I makes an angle

#0 = tan v + w tan(ew+X) (3.1.13)
Oy w

15. International Mathematical and Statistical Libraries, Inc., INSL
Library 3, Edition 6, IMSL, Houston, Texas, 1977.

16. Brown, K.M., "A Quadratically Convergent Newton-Like Method Based
Upon Gaussian Elimination", SIAN Journal of Numerical Analysis,
Vol. 6, No. 4, pp. 560-569, 1969.

17. Law, C.K., "Diffraction of Strong Shock Waves by a Sharp Compress-
ive Corner", University of Toronto Institute for Aerospace Studies
Technical Note No. ISO, 1970.

18. Ben Dor, G., "Regions and Transitions of Nonstationary Oblique
Shock Wave Diffractions in Perfect and Imperfect Gases", University
of Toronto Institute for Aerospace Studies Technical Report No. 232,
1978.
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with I where vOx, VOy , and w are the x and y components of the gas

velocity in region 0 and the incident shock speed in the laboratory
coordinate system, respectively. The resulting flow is then similar to
that described in the regular reflection case except that now the flow
in region.2 need not be parallel to the wall surface. Instead, the flow
velocity u2 relative to the velocity of the wall must be parallel to the

wall surface. With the assumption that the incident and reflected shocks
are straight line shocks (i.e. not curved) at least in a neighborhood of
Z, the oblique shock relations which now relate uniform flow properties
in regions 0, 1 and 2 are:

Plu1 sin (#- 0 1) = pouo sin #0, (3.1.14)

2 2

PI p1°[Ul sin 01e)] 2 = P0 + 0[0sin *0] 2 , (3.1.15)

u 1 co - 01) * Uo cos 0 (3.1.16)

h I + 0.S[u I sin ( 0 1)] = h0 
+ 0.5[u 0 sin 0, (3.1.17)

Pu sin ) " = Plu1 sin #IV (3.1.18)

P2 + P2 [u 2 sin (1 1 " 02)] 2= PI + P1 [u1 sin 1i 2 ,  (3.1.19)

u cos C 1 (3.1.20)
2 1 2 11

h 0.5[u2 sin (fI - 0 2)]= hl 0.5[u sin i] 2  (3.1.21)

The portion of the flow in region 0 which passes through the Mach stem
makes an angle *M with M. In general, the Mach stem will be a curved

shock, so M will vary with position along the Mach stem. While passing

through the Mach stem, the flow is deflected from its original direction
by an angle e3 and its dynamic and thermodynamic properties are changed.

If the Mach stem is straight in a neighborhood of Z, the flow is uni-
form in that vicinity. These properties are related by the oblique
shock relations (3.1.1)-(3.1.4). For the Mach stem the oblique shock
relations can be simplified with

ua • n a u0 sin #M' ub , n a u3 sin (#M - e3)1

ua , t - U0 Cos *MS ub 0 t - 9 3);
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and rewritten as:

P3U3 sin N - 83) = PoUo sin OM, (3.1.22)

u3 cos (OM - 3) U0 cos , (3.1.23)

P3 + P3 [U3 sin (IM - 83)] = P0 
+ o[Uo sin m]2, (3.1.24)

h3 + 0.5[u 3 sin ( I - 03)]2 = h0 + O.. [u0 sin OM]
2 .  (3.1.25)

Furthermore, the flow fields in regions 2 and 3 are related across the
slipline because equal pressures exist and the same flow direction occurs
near the slipline:

P3 = P 21 (3.1.26)

03 = 01 02. (3.1.27)

For the special case where X = 0, the triple point Z attaches to the wall
and the slipline and region 3 are nonexistent. If one allows 83 = 0, equa-

tions (3.1.13)-(3.1.21) and equation (3.1.27) reduce to the regular re-
flection case. For X 0 0, equations (3.1.13)-(3.1.27) represent 15
equations in 16 unknowns x, *0' U0, Pl' u, 0l' *1' 0 2' P21 P2' u 2

ON, 03 3' P3, and u3 when the initial conditions (Po' Pl' TO' ew' Vox,

and v oy) are given. The perfect gas relations p = P/(TR*) and h =

yP/[(y-1)p] are assumed. In order to obtain the missing 16th equation,
the entire Mach stem is assumed to be a straight line shock. Experiments

have shown that except for strong diffractions, the Mach stem is only
17

slightly curved . Therefore this assumption does not introduce gross
errors. It is equivalant to the assumption of a uniform flow field about
the Mach stem. Because the flow adjacent to the wall must remain parallel
to the wall's surface after passing through the Mach stem in the labora-
tory coordinate system, the Mach stem must intersect the wall at 900.
Consequently, we have the following geometric relation

--00  * + w (3.1.28)

along the entire Mach stem. Equations (3.1.13)-(3.1.28) form a system
of 16 nonlinear equations in 16 unknowns which determines the flow field
in the neighborhood of Z when the initial conditions in Region 0 and the
incident shock I are given.
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For nonstationary flow, the criteria for distinguishing between the
sundry types of reflections are contained in References 14 and 18. Re-
flection occurs if the flow behind the incident shock is non-subsonic in
the shock-fixed coordinate system. Figure S delineates the regions of
regular reflection (bottom section) from Mach reflections (top section)
in the angle of incidence - inverse shock strength plane. The curve
labeled *e is the limiting curve above which regular reflection is
theoretically impossible. The curve labeled + is the limiting curve

below which the past history can not affect the reflection process. The
experimental points indicate the smallest incident angle at which Mach
reflection has been observed. The termination of Mach reflection occurs
when the Mach number in the shock-fixed coordinate system of region 2
is equal to or greater than one.

The implementation of the regular and Mach reflection theories to
form the analytic model for shock wave propagation into a reentrant
corner is best illustrated by examples. Such examples are given in Sec-
tion 3.2. In the next subsection the theory is used to compute the two
shock tube experiments described in Section 2.

3.2. Examples.

In the experiments, the walls forming the corners do not have in-
finite extent. This limits the model's predictions to finite times after
the incident shock reaches the vertex. To obtain the complete history
of the vertex pressure, a hydrodynamic computer code simulation of the
entire experiment must be performed.

Consider the incident step shock from Shot 2 with P1/P0 = 2.3699

which propagates into an infinite reentrant corner with vertex angle 500.
(See Figure 6.) From the geometry, the incident angle is 0 = 400. The

medium is assumed to have constant specific heats cv = 714.0 J/(kg-K)

and cp = 1001. J/(kg.K), and a gas constant R = 287.03 J/(kg.K).

The initial conditions in region 0 are P0 = 100.66 kPa, To = 295.48 K,

and zero gas velocity in the laboratory coordinate system with its
origin at the vertex. Consider a point Q on the corner wall at which the
incident shock impinges. If we make a Galilean transformation at Q, we
can apply the formulas in Appendix B. In the shock-fixed coordinate

3
system, we compute p1 = 2.1561 kg/m , u1 = 667.35 m/s, T1 = 385.45 K,

81 - 1.208* and aI W 393.84 m/s. Because the flow is supersonic in

region 1, reflection occurs at Q. The point (#0 = 40* and P1/P0 =

0.4168) in Figure 5 falls below the # e curve, and thus regular reflec-

tion occurs at Q. Solving the four equations governing regular reflec-
tion, equations (3.1.9)-(3.1.12), in the neighborhood of Q with ZSYSTM
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Reflection (Adapted from Reference 14).
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Figure 6. Flow Field Before the Incident Shock Reaches the Vertex for
Shot 2.
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3
we obtain p 2 u 3.7132 kg/m, u2 * 488.09 n/s, P2 u 521.08 kPa, and

*1=56.893*. (These results were obtained with ZSYSTM termination param-

eters EPS = 10 "1 0 , NSIG - 13 and II14AX - 100.) From geometric con-

siderations, the angle of reflection is 41.685 °. With the assumption of
an infinite corner, rarefaction waves do not exist within the corner,
and the incident and reflected shock remain straight. Thus, the gas
properties behind these shocks are uniform and the values of the flow
properties calculated in the neighborhood of Q are those behind the en-
tire extent of the shocks. Upon transforming back to the laboratory
coordinates, we obtain the configuration depicted in Figure 6. The gas
properties in regions 0, 1 and 2 are summarized in Table 2. (The veloc-
ities are denoted by u in the shock-fixed coordinate system and by v in
the laboratory coordinate system.) The speeds of the incident and first
reflected shocks are denoted by wI and wRl respectively. The velocities

in the laboratory coordinates in regions 1 and 2 are parallel to the
plane of symetry and the corner wall, respectively. The angle of in-
cidence is not equal to the angle of reflection and this one reflection
process has already increased the pressure near the wall by a factor of
5.18.

The pseudo-steady flow of Figure 6 remains unchanged until the
incident shock reaches the apex. At that instant only the first re-
flected shock remains (only regions 1 and 2). This shock continues to
propagate along the plane of symmetry with an angle of 8.315' and a
speed of 3637.0 m/s. With an inverse strength of P1/P2 * .4578, regu-

lar reflection occurs at any reflection point Q' according to Figure 5.
(See Figure 7.) Because the flow properties are already calculated in
regions 1 and 2, only the flow in region 3 must be calculated. We make
a Galilean transformation at Q. In this shock-fixed coordinate system,
the velocity magnitudes are u1  3 3865.52 m/s and u2 = 3838.63 m/s in

and the flow deflection angle across the shock is 3.464e . Solving the
four equations governing regular reflection, equations (3.1.9)-(3.1.12),
in the neighborhood of point Q1 with identical ZSYSTM termination param-

eters as before, we obtain 3  6.0394 kg/m3, u3 = 3808.8 m/s, P = 1.045

MPa, and *2 = 9.0690. From geometric considerations, the angle of reflec-

tion is 5.605° . With the infinite corner assumption, the second reflected
shock remains straight and the gas properties behind the shock are uniform.
Thus, the values of the flow properties calculated in the neighborhood of

are those behind the entire extent of the second reflected shock. Upon
transforming back to the laboratory coordinates, we obtain the flow field
in Figure 7 with respect to regions 1, 2 and 3. The gas properties of
region 3 are given in Table 2. The gas velocity in region 3 is parallel
to the plane of symetry. The speed of the second reflected shock is
denoted by wR2.
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Table 2. Regional Flow Properties for Shot 2 in Laboratory Coordinates.

Region 0 Region 1 Region 2

P0  - 100.66 kPa P1  - 238.5 kPa P2 a 521.08 kPa

PO * 1.1869 kg/n
3  P 1 = 2.1561 kg/n P2 a 3.7132 kg/n

3

To - 295.48 K T1  a 385.4 K T2  = 488.91 K

a0  m 344.82 ./s a1  - 393.84 n/s a2 = 443.56 n/s

V 0x - 0 U/s vlx - 228.52 m/s V2x - 194.62 m/s

Vy - 0 U/s V - 0 m/s V = 231.94 m/s
O n/ "ly 2y

WI 508.36 rn/s w RI 525.96 rn/s wR2 *355.24 rn/s

Region 3 Region 4* Region S*

P3  1.0447 MPa P4  - 1.8913 MPa P z 1.8913 MPa

3 3 3

P3  - 6.0394 kg/m3  P4 - 9.1668 kg/m
3  p 5 = 8.7707 kg/m

3

T3 - 602.65 K T4 = 718.80 K TS = 751.26 K

a3 = 492.46 m/s a4 = 537.83 m/s a5 - 549.84 m/s

V3x ' 171.8 m/s V4x - -33.492 m/s V sx -101.90 m/s

v 3y a 0 /s v4y - -75.358 m/s v s= -121.42 m/s

WR3 - 479.713 m/s ' 2 - 497.18 m/s

*These values are valid only in the neighborhood of the triple point.
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Figure 7. Flow Field Shortly After the Incident Shock Reaches the
Vertex for Shot 2.
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The second reflected shock will subsequently impinge on the corner
wall at an angle of 55.605. With an inverse shock strength of
P2/P3 - 0.4988, Mach reflection occurs at the wall according to Figure

S. Aligning the second reflected shock with the schematic in Figure 4,
the incident shock speed becomes 355.24 a/s and the gas velocity com-
ponents in regions 0 and I are vx * - 249.84 m/s, vo, * - 171.03 r/s,

Vlx - - 16.781 m/s, and v ly - 170.98 r/s. For Mach reflections, a

Galilean transformation is made at the triple point Z. The velocity
of the triple point depends on an unknown X of the configuration.
Thus, in the shock-fixed coordinate system for Mach reflections, the
values corresponding to #0Uo' Ul, 1 are not known, even though in

the laboratory coordinate system they are known. Because the thermo-
dynamic properties are independent of the coordinate system, the values
corresponding to Po, Pl, poi pl are known as is the wall angle 8 w - 900

- S5.60S5. In reference to Section 3.1, we have now IS equations and
15 unknowns (P1 is now known). It was found by the first author that

the solution of these equations is more simply obtained by the follow-
ing procedure: (a) guess an initial value of X, XG, and compute the

corresponding # from equations (3.1.13) and (3.1.28); (b) solve an
MG

appropriate subset of the equations corresponding to equations (3.1.13)-
(3.1.27) for *ll, P2, P29 u2 *-Mc, e., 03' P3 and u3 with the sub-

c

routine ZSYSTM; (c) iterate on X until ifM - * M is zero within aG c

given tolerance. Following this technique (tolerance u 10-4 ), the
solution of the flow field in the neighborhood of Z in the shock-fixed
coordinate system is

x a 11.083% 81 a 13.710% u0 - 805.86 m/s, P2 - 9.1668 kg/3,
3

0= 48.664,' e 2  4.608, u1 - 649.33 a/s, P3 a 8.7707 kg/a 
,

#M = 83.0599 e3 9.1010, u2 - 434.86 m/s, P2 = P3 
= 1.8913 MPa.

01 M 80.807,' u3 
= 352.39 m/s,

Table 2 lists the values of the flow variables in the laboratory
coordinate system. From geometric considerations the angle between
the incident shock (actually second reflected shock) and the reflected
shock in the Mach configuration is 64.239". If we extend this Mach
reflected shock in a straight line to the plane of symmetry, the in-
cident angle at the point of intersection " I is 110.1S60 (an obtuse
angle). Thus, no more reflection can occur. This reflected shock
must then impinge at Q"I at a right angle to the plane of symmetry
so that the gas flow in the neighborhood of Q" is parallel to the
plane of symmetry. Consequently, the reflected shock must be curved
to satisfy the required angles at points Z and Q/1, and the flow
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properties in region 4 are not uniform. See Figure 7. The values of
the flow properties in region 4 must be obtained by a hydrodynamic
computer code simulation. However, an approximation of the vertex pres-
sure value can be obtained by taking as the vertex value the pressure
value calculated in the intersection of region 4 and the neighborhood
of Z. Although obviously incorrect, the resulting pressure value gives
a peak pressure value comparable to those of experiments while retain-
ing the simplicity of the model. If the incident angle at Q, were
acute, Q I would be another reflection point and the method of analysis
would have continued. If the incident angle at Q/J were 90', no further
reflection would occur and the final shock would not be diffracted. In
such a case, the reflected shock would remain straight, the gas proper-
ties in region 4 would be uniform, and the method would give exact val-
ues of the flow field within the entire infinite reentrant corner.

The Mach stem ZQI" is assumed to be straight and intersects the
wall at 90' according to the discussion in Section 3.1. Its speed is
denoted by wR21 . The velocity in region S is parallel to the wall. The

pressure near the wall behind the Mach stem has increased by a factor
of 18.8. A curved slipline separates regions 4 and S which has identical
pressure values across it. The velocities in regions 4 and S relative
to the unsteady motion of the slipline are parallel to the slipline.
Because region 4 is nonuniform, the computed values are valid only in a
neighborhood of the triple point and care must be used in any extrapola-
tion. The speed of the Mach reflected shock wR3 is also correct only

in the neighborhood of Z.

Shot 1 is analyzed in a similar fashion. Conceptually, the only
difference in the analyses is that at the last reflection point, regu-
lar reflection occurs instead of Mach reflection. As before, the last
shock wave is diffracted and the pressure at the final reflection point
is taken as the vertex pressure value. The flow fields shortly before
and after the incident shock reaches the vertex are shown in Figures 8
and 9. The regional flow properties in laboratory coordinates are
summarized in Table 3.

3.3. Peak Pressure Duration for a Finite Corner.

To determine an analytic approximation for the duration of the
peak pressure at the vertex of a finite corner, we use the concepts devel-
oped in Reference 19. The velocities of the incident shock wave and of
the rarefaction wave generated at the leading edge of the finite corner
are calculated from the values computed in Section 3.1. Using the
known length of the corner wall, the time from peak pressure devel-
opment (arrival of the incident shock at the vertex) to the instant the
rarefaction wave reaches the vertex can be computed.

19. Smith, L.G., "Photographic Investigation of the Reflection of Plane
Shocks in Air", NDRC Report No. A-350, OSRD Report No. 6271, 194S.
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Figure 8. Flow Field Before the Incident Shock Reaches the Vertex
for Shot 1.
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Table 3. Regional Flow Properties for Shot I in Laboratory Coordinates.

Region 0 Region 1 Region 2

P0  - 100.80 kPa P1  = 113.20 kPa P2 = 126.91 kPa

o = 1.1887 kg/ 3  Pl - 1.2912 kg/ 3  P2 = 1.4008 kg/n3

TO = 295.44 K TI m 305.45 K T2 = 315.64 K

a0 W 344.80 r/s aI = 350.60 n/s a2 = 356.40 m/s

VOx = 0 3/s Vlix = 28.79 M/3 V2x = 23.84 n/s

V y = 0 M/s Vly v 0 /s v2y = 28.40 m/s

wI a 362.51 m/s WRI = 363.39 3/s WR2 = 342.23 n/s

Region 3 Region 4*

P3 a 141.9 kPa P4 = 165.44 kPa

03 - 1.5175 kg/m P4 = 1.6922 kg/K
3

T3 = 32S.98 K T4 = 340.62 K

a3 = 362.19 n/s a4 = 370.23 m/s

V3x = 19.2 n/s V4x = -15.95 n/s

V3y . 0 rn/s v4y = -19.01 ./s

WR3 = 370.10 n/s

* These values are valid only in the neighborhood of the last reflection

point.
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The incident shock wave travels at a speed of wl/sin 0 along the

wall and traverses it in tw (dw sin #o)/wl, where dw is the length of

the wall. (See Figure lOa.) The rarefaction wave travels at a speed
equal to the algebraic sum of the sound speed and the gas particle
speed. In tw seconds, the rarefaction wave in region 2 travels a dis-

tance dr - (a2 + v2)tw, because the direction of the gas velocity is

toward the vertex. The remaining distance that the rarefaction wave
must travel to reach the vertex is

dp = dw  dr

(3.3.1)

= d[1 2v2 sin

The time that the rarefaction wave takes to traverse the distance d isP
the duration of the peak apex pressure. The velocity of the rarefaction
wave depends on the gas properties in regions 2, 4 and 5 for the
configuration depicted in Figure 7 and the gas properties in regions 2,
3 and 4 for that given in Figure 9. Because the extent of region 3 at Q//
near the wall is small (see Figure 9) we neglect its influence on the
speed of the rarefaction wave. The rarefaction wave continues to propa-
gate into region 2 until it meets the final shock traveling at speed wF

along the wall from the vertex. (See Figure lOb.) The time at which
this occurs is

d
t* - a (3.3.2)a2+v2+WF

The time to traverse the remaining distance from their meeting point to the
vertex is

+ wF t*
t -- (3.3.3)aF-vF

where a F and v F are the sound speed and gas velocity in the final region,

respectively. For aF and wF we choose the well-defined gas properties

inmediately behind the last shock at the wall. These values are not
accurate for the whole region, and therefore, the calculation provides
only an approximation to the duration of the peak pressure. Adding
equations (3.3.2) and (3.3.3), the approximation to the duration of the
peak pressure is
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t+ t+I + F d. (3.3.4)
a F-VF a 2+vz1wFj

In both experimental Shots 1 and 2, the distance dw is 0.166 m and

angle f0 is 40°. For Shot 2, we use the appropriate values from Table

2 with w = wR2iaF = a5, and v = v5 in equations (3.3.1) and (3.3.4)

and compute the duration of the peak pressure to be 17.06 us. For Shot
1 we use the appropriate values from Table 3 with wF = wf3, aF =a 4 and

vF = v4 to obtain from equations (3.3.1) and (3.3.4) the peak pressure

duration of 135.78 us.

4. DORF CODE SIMUIATION OF AN INFINITE CORNER

4.1 DORF Code Description.

The DORF hydrodynamic computer code is a two-dimensional, Eulerian,
explicit code which solves the equations for conservation of mass,

2-P + • (p) ( , (4.1.1)
a t

conservation of momentum,

+p ) + .(p ) = - P, (4.1.2)

at

and conservation of total energy,

a (pE + [V - -p _) *(P _V) (4.1.3)
t v. (.E

together with an equation of state of the form

P = P(p,I), (4.1.4)

and a sound speed equation of the form

a = a(p,P). (4.1.5)

For the computations described in this report, the fluid is
taken to be inviscid air and is assumed to be polytropic, so equation

(4.1.4) becomes

P = PI(y-l), (4.1.6)

with y = 1.402. The particular sound speed relation is i
a (4.1.7)
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The momentum equation (4.1.2) is derived from the Navier-Stokes equation

EEL . (P). pg- P .
at

+ 2( .A)4+X(VWX), (4.1.8)

by assuming the fluid to be inviscid (v - X a 0) and the gravitational

acceleration * 0 0. The energy equation (4.1.3) is derived from

3(pE) + • (pE )] p • g
at

* • { T - P A * + • -) (4.1.9)

by letting the heat transfer coefficient T - 0, and using the previous
assumptions of zero viscosity and gravity.

The DORF code uses an explicit numerical method. The time step for
a given sweep through the computational mesh is computed by sweeping
through the entire mesh and computing, on a cell by cell basis, the
minimum cell dimension

d = nmin (bx, Ay), (4.1.10)

the time step based on the sound speed in the cell
di

At a  n 4..1

the time step based on the x direction particle speed

A aAX (4.1. 12)

X

and the time step based on the y direction particle speed

At. y . (4.1.13)
y v

y

Once these values are computed, a candidate time step based on the given
cell is computed by
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Atk min(Atat Atx t y). (4.1.14)

This process is repeated for each cell in the flow field with the final
value for the time step to be used during the next computational cycle
being

At= min[AtlAt29 ... Atk, ...Atkm ax], (4.1.1S)

where n is the Courant-Friedrichs-Lewy stability factor.

Once the time step is established, the DORF code proceeds to compute

phase I, which is the Lagrangian phase. The flux term [. (pvv)] in
equation (4.1.2) is temporarily dropped, leaving

= - v . (4.1.16)

which is used to compute the fluid acceleration caused by the pressure

gradient between two adjacent flow field cells. The flux term [ (pe)]
in equation (4.1.3) is also dropped, leaving

I • (F;), (4.1.17)
at

which is used to compute the work done at the flow field cell boundaries.
In the Lagrangian phase, the continuity equation (4.1.1) becomes

S0 .(4.1.18)at
Substituting equation (4.1.18) into equations (4.1.16) and (4.1.17), we

obtain = P, (4.1.19)

and

P W .(PV) (4.1.20)

respectively. If we take the specific kinetic energy equation (the dot

product of equation (4.1.19) with V) and subtract it from equation
(4.1.20), the equation for the specific internal energy for the Lagrangian
phase is obtained. The updated Lagrangian phase values of the momentum
and the specific internal energy are then computed using central spatial
differences and forward time differences for the corresponding deriva-
tives in the momentum equation (4.1.19) and the specific internal energy
equation.
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The initial values in the Eulerian or fluxing phase are the updated
Lagrangian phase values. The governing equations in this phase are the
continuity equation (4.1.1), the mmentum conservation equation (4.1.2)

without the stress term - P,

!sea -" (J'wp), (4.1.21)at

and the total energy conservation equation (4.1.3) without the work rate

term - - (Fi),

at(pe = _(pev) (4.1.22)
at

The DORF code is set up so that the grid origin is at the lower left
corner of the grid. The cell indexing increases monotonically when
moving either upward from the origin or to the right from the origin,
as do the spatial coordinates being simulated. The DORF code uses the
donor cell fluxing method to update the mass, momentum, and specific
total energy values. The updated value of the specific internal energy
is computed by subtracting .the specific kinetic energy (obtained from
the updated velocities) from the updated specific total energy values.
These post-Eulerian phase values are taken to be the values at the end
of a given time step. Within the Eulerian phase, a logical constraint
exists so that a given cell cannot flux out more material than it con-
tains. The donor cell fluxing method is first order accurate. Thus
the entire accuracy of the solution is first order. A more detailed
discussion of the DORF code is found in Reference 5.

4.2. Examples.

The DORF code was used to simulate the gas flow within an infinitely
long reentrant corner for the case depicted in Figure 1 with 2a=100.
An infinite reentrant corner was chosen, because the corresponding gas flow
is considerably simpler than the flow within a finite corner, and because a
comparison of the results of DORF and the analytic model was intended. The
simplification which is made possible by the existence of a plane of symmet-
ry within the 1000 corner was not exploited in the numerical simulation.

For a non-right angle corner, one of the straight walls forming the
reentrant corner within the framework of the DORF code must be approximated
by a stair-step. Consequently, the simulation of an 1000 corner with its
axis of symetry and its more separated walls is preferable to the simula-
tion of a 50 corner. The quantification of the effects of stair-steps is
a primary objective of this numerical computation. A discussion of the
different types of stair-step approximations is given in Section 4.3.
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Using the DORF code we simulate the two experiments that were also
analyzed by the analytic model. The initial conditions used by DORF
are those obtained from the analytic model corresponding to the gas
flow configuration before the incident shock reaches the vertex. For
Shot 2 the initial conditions correspond to those depicted in Figure 6
and for Shot 1 those depicted in Figure S. Because the corner's orien-
tation for the computer calculation is different from that for the ana-
lytic calculation, and because the full 100* reentrant corner is ana-
lyzed, the direction of the velocity vectors must be modified. Figure
11 shows the initial flow field for the 100* corner based on the 50*
corner analysis. Table 4 lists the initial values of density, specific
internal energy (I-c vT) and velocity components for Shot 2 while Table

5 lists the initial values for Shot 1. The walls forming the reentrant
corner (the bottom boundary and the 10* wedge emanating from the top
left corner in Figure 11) are reflective boundaries. The top and right
boundaries are transmissive inflow boundaries for the present problems.
However, no special boundary routine was incorporated into DORF to
simulate a steady inflow. Instead, in order to avoid erroneous bound-
ary signals from propagating into the portion of the flow field of
interest, the top and right boundaries were placed sufficiently far up-
stream of the vertex of the reentrant corner and the incident shock.
It was estimated that any waves from the boundaries theoretically travel
less than 10% of the distance along the wall toward the vertex during
the simulated time. The actual speed of such boundary signals in the
computational domain can be monitored during the calculation, because
region 2 near the transmissive boundary and along the smooth horizontal
wall should remain uniform until the reflected shock emanating from the
vertex reaches this region.

For the sample calculations, we chose the stability factor n = 0.4
and did not activate the artificial viscosity option. The mesh size and
the stair-step approximation are discussed in the next section. The
results of the DORF simulation are stated in Sections 4.4, S.1, S.2 and
5.3.

4.3. Stair-Step Approximation.

The computational domain is a two-dimensional Cartesian grid forming
a 1000 reentrant corner. The bottom boundary is a smooth reflecting
boundary representing one side of the reentrant corner. (See Figure 12.)
The left boundary is also a reflecting boundary, but it is along this
boundary that the non-responding flow field cells are stacked to construct
the other side of the reentrant corner. As may be seen in Figure 12,
the actual reentrant corner side along the left boundary is approximated
by a series of discrete steps. If a single computational cell per step
were used with its diagonal parallel to the reentrant wall the cell
would have a cell aspect ratio of
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Table 4. DORF'S initial ValUeS for Shot 2.

Resion 0 Rtesion 1

Po - 1.89k/ - 2.1561 k/

10 a210.97 ks I~ I 275.21 ks

vx X0-0.U/s v 1 -146.89 u/

v -0 /S v -175.06 rn/s

Ratios 2 ad e 41.685*

02 a P21 a 3.7132 ks/rn
3

1 2 a 12/ - 349.08 WIks

vx2 ' -302.78 rn/s

v 2a 0 U/s

v * -225.05 rn/s

4S4



Table S. DORF's Initial Values for Shot 1.

Region 0 Region 1

P0 = 1.1887 kg/n
3  *1 0 1.2912

I 0 = 210.94 kJ/kg I I  - 218.09 kJ/kg

Vo= 0Oa/s Vxl - -18.506 u/s
v X0 O0U/s vxi,-1.6 l
vyo = 0 U/s Vyl - -22.054 r/s

Regions 2 and 2' = 40.116"

P2 ' 02/ = 1.4008 kg/m
3

12 = 12/ = 225.37 k/kg

Vx2  - 37.079 ls

v = 0 m/s

Vx2/ = 6.4387 r/s

Vy2/ = - 36.516 a/s
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Figure 11. Initial Flow Field for DORF Simulations.
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Figure 12. Reentrant Corner Construction.
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A~y = Y= 1 5.7 (4.3.1)

ASx ax tano (4..1

where ASy, ASx are the dimensions of a step, and Ay and Ax are the di-
mensions of a cell, in the y and x directions, respectively. A large
aspect ratio such as this can cause numerical instabilities in DORF.
This stair-step construction can be modified by dividing the single cell
into several cells. For the case of ASy > ASx, the values of ASx,
ASy and Ay are given by:

ASx a Ax, (4.3.2)

and ASx

Ay= ASY/ (I t 1) (4.3.4)

where j is the greatest integer function. In our case 6 - 100, Ax =
10, and Ay is calculated via equations (4.3.2)-(4.3.4) as 9.4521 mm.
The steps are designed so that each complete step has six cells in the
y-direction and one cell in the x-direction. Furthermore, the stair-
step wall is constructed so that the line representing the actual, smooth
reentrant corner wall bisects both the horizontal and vertical sections
of each step. The computational grid contains 60 equal cells in the x-
direction and 60 equal cells in the y-direction.

A study comparing the effects of constructing a stair-step wall
with more than one square cell per step as opposed to a single high
aspect ratio cell per step for shocks propagating parallel to a coor-

dinate axis has been performed at the Air Force Weapons Laboratory . The
conclusion reached in that report is that the better way to construct the
approximated wall is by using high aspect ratio cells like those that
would be generated by equation (4.3.1). This has intuitive appeal, and
may be quite valid for codes which can accurately compute with high as-
pect ratio cells and for cases where the incident angle between the wall
and the shock is not near 45. For a wall angle of 45", this method
reduces to using a single square cell per step. With single cell steps,
a normal shock reflection occurs at every cell when the shock reaches
the wall, which does not occur on the physically straight wall. For a
high aspect ratio cell whose long side is along the direction of travel
of the shock, this normal reflection will be weaker than for a square
cell. In any case, the numerical simulation may not represent the physi-
cal flow because of the many small normal shock/surface interactions.
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Figure 13 shows a partial reconstruction of the grids used for two

AFWL 9 problems designated by the ediors 19.6026 (hereafter referred to
as Problem A) and 19.8029 (hereafter referred to as Problem 5). Problem
B uses high aspect ratio cells with Ax - 3 = and Ay a 0.$29 am. A
diagonal dram from the cell lem left coer to the cell upper right
corner is at a 10" alo with respect to the lower bmdary of the cell.
This construction provides a pod qpximatin of the 100 wall angle.
Using this constructiom a W mpaslem oeom at me and of eech cell,
a normal reflection occurs at the ether eud, ad the comted cell-
center values represemt m averaging between these two extremes. The
absolute atmospheric pressur for this cemputatios is 101.13 kPa and the
shock overpressure is 544.6 kPa. The omputed peek for Problem 3 is
423 kPa, which compares very well with the predicted value of 427 kPa
taken from Figure 3.766 (f Neferemce 20. Problem A uses steps construct-
ed of square cells, 3 - . i sie, with the steps being one cell high
and five cells wide. Ike azi --- t does not approximate a 10* wall
but rather approximates -a 11.31 sll. If these cells were constructed
as prescribed by equaties (4.3.2)-(4.3.4), this discrepancy would be
rectified. The five flew field cells comprising say given step in
Problem A represent a variety of cemiltioms. The forward-most flow field
cell along a step, for exmle cell "A" in Figure 13, is essentially the
first cell around a 90 expansiom cerer after a normal reflection. The
last flow field cell on a step, for example cell "r' in Figure 13, is
the last flow field cell prior to a mm-responding wall against which the
shock undergoes a normal ref lectiou. The intervening three flow field
cells provide a transition of umnmown accuracy between the two extremes.
Problem A shows a peak reflected overpressure of 0.758 NPa, 77% above

the predicted20 value. However, the flow field cell used in Reference
9 to give the peak pressure value is the same type as cell "B" in
Figure 13. This higher pressure is the result of the interaction of
the shock with a one-cell-high normal reflecting surface. It would be
more informative to see the overpressure histories for all five flow
field cells on a step, particularly the third, or middle, cell. The
third cell has its center at the geometric center of the step, Just as
the cell center for the high aspect ratio cell is also the geometric
center of the single cell step in Problem B. A comparison between the
third cell in Problem A and the high aspect ratio cell in Problem B
might be more meaningful.

Another comparison in Reference 9 is between a HULL computation and

the corresponding experiment21 for a step shock (P1/P0 - 27.3) impinging

on a 40* wall. In that example a Mach reflection develops on the wall.

20. Glasstone, S. and Dolan, P.J., '"he Effects of Nuclear Weapons",
Department of the Army Pamphlet No. 50-3, Headquarters, Department
of the Army (March 1977).

21. Bertrand, B.P., "Measurement of Pressure in Mach Reflection of
Strong Shock Waves in a Shock Tube", BRL-MR-2196, US Army
Ballistic Research Laboratory, Aberdeen Proving Ground, ND4
(June 1972). (AD #746613)
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As before, the incident shock is propagating parallel to the horizontal
coordinate axis. The grid used for the HULL calculation is constructed
of nearly square cells (Ax - 3mm, Ay - 2.5173im) in the region of the
wall. Each cell on the wall surface constitutes a stair-step. The
diagonal of each cell is parallel to the physical wall. As the wall
angle approaches 45" both methods studied in the APWL report became the
same. Thus, for this case the procedure recommended by AFWL would be
the same as the one used in the DORF simulations. The maximm differ-
ence between HULL's results and the experimental peak and late time pres-
sures is 11.S%. However, the structures of the pressure histories do
not compare well. The pressure plateaus seen experimentally are not
evident in the calculations and the computed times between the initial
shock arrival and peak pressure for points well up the wall also do not
agree. Thus, the HULL calculation for this problem shows inconsistent
simulations of the physical phenomena.

The stair-step formulation used in this report is quite similar to

the multiple-square-cell step construction described in the AFWL 9 report.
However, the physical phenomena considered in this report differ from
those flows simulated by AFWL because the incident shocks do not impinge
normally on the stair-step (see Figure 13) but rather obliquely (see
Figure 12), and the incident shock strengths considered in this report
are smaller (by 7S%-SO%) than those in the AFVL study. This report
considers both regular and Mach reflections, while the AFWL report is
only concerned with MACH reflections. Furthermore, this report deals
with the DORF code while the AiWL report documents the HULL code re-
sults. Thus the AFWL study is informative, not definitive.

Any type of stair-stepping represents a potentially serious problem.
For example, along the bottom boundary of the grid, the incident angle
is #B = 40° everywhere, as desired. However, along the left boundary,

the incident angle is *L = 500 because of the stair-stepping. Moreover,

at every sixth cell along that side there is a local reentrant corner,
having OL = S0 and u 40*. Each of these discrete steps disturbs

the flow field.

A better solution to the problem of forming a stair-step wall would
be to add the capability of including partial rigid cells in a flow

field. Such a capability has been successfully implemented22 in the

SAMS code23 which belongs to the same family of hydrodynamic computer
codes as do DORF and HULL. Another alternative is to turn to recently
developed techniques for generating body conforming coordinate systems.

22. Coleman, M., ARRADCOM, BRL, Private communication.
23. Traci, R.M., Fan, J.L., and Liu, C.Y., "A Numerical Method for the

Simulation of Muzzle Gas Flows With Fixed and Moving Boundaries",
BRL Contract Report No. 161, June 1974. (AD #784144)
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However, irrespective of the possible alternatives to stair-stepping a
straight boundary, a purpose of the present study is to quantify the
difference in the flow field in the vicinity of a stepped reflecting
boundary as opposed to that near a smooth reflecting boundary.

4.4 Comparison of the Pressure Along the Smooth and Stair-Step
Boundaries.

The pressure values for Shots I and 2 along both the smooth and
stair-step walls are compared in two ways: the spatial pressure pro-
files are given along the walls at five specific times and then the
pressure histories at four selected pairs of wall positions. The
pressure values are cell-centered. The cells chosen for the comparison
are adjacent to each wall for example, cells 1,2,3,4,5,... along the
smooth wall and cells 1,21,3J,4,S/,... along the stair-step wall as
shown in Figure 14. Therefore, only one stair-step corner is initially
downstream of the incident shock. The distance from the vertex of the
corner to a given point along either wall is denoted by d. The initial
position of the shock is along the straight line between the points
(O.158m, 0.0m) and (0.09m, 0.0567m) in the computational domain.

An inconsistency in the reflected pressure values at the first re-
flection point arises in the DORF simulation due to the stair-step approxi-
mation. For example, consider the simulation of Shot 2. Because the
actual incident angle of the incident shock along the stair-step is 500,
Mach reflection is predicted at the first reflection point (see Figure 5)
rather than regular reflection as on the smooth boundary (incident angle
40*). Even when the same type of reflection is predicted, the pressure
behind the reflected shock along the stair-step wall is different from
the value along the smooth wall, because the angles of incidence of the
shock are different. This inconsistency is inevitable given the con-
straints of the present DORF capabilities. The discrepancies between
the stair-step and smooth boundary pressures caused by this inconsistaen-
cy may be lessened somewhat, because the conditions imposed in region 2'
are identical to those in region 2.

The variations of the absolute pressure values for the numerical
simulations of Shots 1 and 2 along the smooth and stair-step walls are
compared at the initial time (t=0), at a time immediately before the
incident shock reaches the vertex, at the time when the maximum pressure
develops at the vertex, and at early and late times after the final shock
leaves the vertex. The spatial extent of the comparison is O.18m from
the vertex along each boundary. Figures 15-19 show the histories of
the computed wall pressures for Shot 2; Figures 20-24 describe those
for Shot 1.
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Figure 14. Detailed Portion of Computational Domain Near the Vertex.
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Figure 15 compares the initial pressure values along the walls, as
prescribed by the initial conditions. The transition from the ambient
pressure to the pressure behind the reflected incident shock is smeared
out over 3 to 4 cells. These initial curves are not identical, because
the uniform mesh spacings along the x-coordinate are not equal to those
along the y-coordinate.

At t = 69.74 ps (Figure 16), the incident shock has theoretically
passed the stair-step corner but has not reached the vertex. However,
the calculated pressure has begun to rise due to the shock smearing in
cell 1. Along the smooth boundary, the pressure beyond d = 0.045m
is within 4% of the theoretical value of 521.08 kPa. For d > .10m, the
pressure is within 1%. Along the stair-step boundary, three pressure
peaks corresponding to the three stair-step corners are present. The
first pressure peak at d = 0.0331m is substantially larger than the
remaining two. For the first corner, the incident shock propagating
into this small "reentrant corner" is reflected, with an accompanying
increase in pressure. For the other corners, the initial gas velocities
in region 2' are such that the air is partially stagnated in these
corners which causes a lesser pressure rise than the shock reflection
in the first corner. Although the pressures along the stair-step
boundary do oscillate around the corresponding pressures on the smooth
boundary, the character of the flow along the stair-step boundary is
markedly different from that along the smooth boundary. The amplitude
of the oscillations is between 20% and 61% of the smooth boundary values
in this example. The last two pressure peaks in Figure 16 do not occur
exactly at the corner position because they reached their maxima pre-
viously at the corners and are now decreasing and propagating from the
corners.

At t = 114.3 Vs (Figure 17), the pressure at the vertex (in cell 1)
reaches a maximum value of 1.643 MPa. The incident shock has reached
the vertex and the reflected shock is ready to propagate from the vertex.
The pressure curve along the smooth boundary approaches the theoretical
far-field value without any oscillations and with only a slight under-
shoot. Along the stair-step wall the effects of the three corners are
apparent. The pressure in the first corner has decreased slightly and
has propagated along the neighboring smooth section of the stair-step
walls. The areas of increased pressure near the second and third
corners have enlarged and the pressure values have decreased from those
shown in Figure 16. The pressure values in cells 2' and 3' are greater
than those along the corresponding section of the smooth boundary. The
percent differences between the pressure values are 49.7% and 25.1%,
respectively. The reason for these differences is that regular reflec-
tion occurs along the smooth boundary and Mach reflection occurs along
the stair-step boundary, due to the different angles of incidence.
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Figure 16. Comparison of Wall Pressure Values for Shot 2 at ta69.74is.
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Figure 17. Comparison of wall Pressure Values for Shot 2 at ta114.3uas.
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Figure 18 gives the pressure profiles after the final reflected
shock has left the vertex. At this early time, the magnitudes of the
pressures differ by nearly 25% along the wall before the first stair-
step corner. The first corner, which is just downstream of the pressure
overshoot, changes the slope of pressure decay along the stair-step
boundary. The effects of the second and third corners can still be seen.
Along the smooth wall the pressure decays without oscillations from its
overshoot to the far field pressure value.

Figure 19 shows the pressure profiles at a later time, t = 321.4
us. The position of the pressure peak is 0.085m from the vertex along
the smooth waill and 0.0995m along the stair-step wall. The percent differ-
ence in locations is 17%. Both pressure profiles are oscillatory be-
hind the peaks. However, the pressure values for d < 0.45 a are within
5% of one another. Near the peaks, the pressure values differ greatly.
Ahead of the peaks, the previously described behavior again occurs.
Hence, only for "sufficiently" large distances behind the pressure peaks
are the pressure values along the smooth and stair-step walls comparable.
The beginning of the equilibration of the pressure values in a small
region near the vertex is the physical reason for the 5% agreement.

Figures 20-24 show the comparison between the absolute pressure
values along the smooth and stair-step walls for the lower pressure Shot
I. This series of figures is analogous to Figures 15-19 for Shot 2. In
Figures 20-24, the pressure scale is more refined and thus the percent
pressure differences are significantly smaller than those in Figures 15-
19. Figure 20 gives the comparison of the initial pressure profiles.
The characteristics are identical to those in Figure 15. At t - 91.09 us,
(Figure 21) the incident shock is between the vertex and the first stair-
step corner. The pressure in the vertex cell has began to rise due to
shock smearing. Behind the incident shock overshoot (d > .055m), the
calculated pressures along the smooth boundary are within 2.4% of the
theoretical value. Along the stair-step boundary, a pressure peak
occurs near each of the three corners. The sam phenomena which are
discussed in relation to Figure 16 are present again. The corner
effects are not so severe, because the initial flow field is weaker.
The calculated pressure values along the stair-step boundary are differ-
ent by at most 5.3% from the calculated smooth boundary values. These
results are significantly better than those depicted in Figure 16. The
pressure profiles at t - 142.4tis (Figure 22) show that the incident shock
has reached the vertex. The numerically caused pressure rise along the
smooth boundary at 0.065 a deviates by less than 2% from the theoretical
value. The effects of the three corners along the stair-step wall are
apparent. The pressure peak at the first corner has decreased from that
in Figure 21, and those at the second and third corners have expanded
along the smooth sections of the stair-step walls. The maximm devia-
tion of the stair-step wall profile from the smooth wall profile is 9.2%
and occurs at the first corner. The differences between the pressure
profiles at the second and third cell centers are 1.2% and 2.3% respec-
tively. This significant improvement over the calculation for Shot 2
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Figure 18. Comparison of Wall Pressure Values for Shot 2 at 183.6 us.
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Figure 19. Comparison of wall Pressure Values for Shot 2 at t=321.4ps.
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is attributed to the fact that regular reflections occur on both walls
and the incident shock is a very weak shock. Figure 23 shows that the
pressure peaks have moved away from the vertex at t - 240.7us. The
positions of the largest peaks are very close and their magnitudes dif-
fer by approximately 1%. The maximum difference between the pressure
profiles is less than 6%. As in Figure 18, the smooth wall profile
ahead of the maximm pressure is smooth while the stair-step profile con-
tains oscillations. In Figure 24 the pressure peaks along both walls
occur approximately at 0.105m from the vertex. The profiles oscillate
behind their pressure peaks and differ from each other by at most 6%
from the vertex to their peak. Thus, the pressures for Shot 1 equili-
brate faster behind the final reflected shock than for Shot 2.

Figures 25-32 compare the pressure histories at corresponding posi-
tions [(2,2'), (3,3'), (4,4') and (5,5)] in Figure 14. Because the
mesh increment in the x-direction (10 m) is not equal to the incre-
ment in the y-direction (9.4521m) the cell-centers at which the pres-
sures are recorded are not equidistant from the vertex. The distances
from the vertex to the cell-centers are: 15mm for cell 2 and 14.18 mm
for cell 2', 25 m for cell 3 and 23.63 - for cell 3', 3S=m for cell
4 and 33.08 as for cell 41, and 4S =m for cell 5 and 42.53 mm for
cell 5'. Consequently, the pressure comparisons show small phase dif-

ferences. In particular, the initial pressure rise along the smooth
wall precedes that along the stair-step wall because the position of
the station along the smooth wall is closer to the initial position of
the incident shock than the corresponding cell-centered positions along
the stair-step wall. Furthermore, the final reflected shock returns
to the stair-step wall cell position before it reaches the corresponding
smooth wall cell position. Consequently, the crossover of the solid
and dashed curves during the final pressure rise in Figures 25-32 is
as expected. The duration of the initial pressure plateau decreases
with successive comparisons of cells 2 and 2', 3 and 3, 4 and 4', and
S and 5 because the time for the incident shock to reach the appro-
priate cell-center decreases with increasing cell number.

Figures 25-28 compare the pressure-time histories tor Shot 2. The
"plateaus" of the solid pressure curves immediately after the first in-
crease, which can be seen in Figures 26-28, are due to the difference
in time between the arrival of the incident shock at a given position
and the return of the final reflected shock to that position. As
expected, the duration of the pressure plateau increases as the distance
from the vertex to the cell increases. These plateaus are missing in the
dashed curves, because the stair-step corner prevents analogous be-
havior. The deviations of the pressure values in the flow field away
from a stair-step corner can be significant when compared with a cor-
responding position off a smooth wall. In Figure 25, the position of
cells 2 and 2' are within 5.5% of each other, and yet the maximum dif-
ference in their pressure values before peak pressure occurs is 82% at
t - 0.122 as. The pressure history at the stair-step reentrant corner
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(cell 41) is given as the dashed curve in Figure 27. The inter-
action between the incident shock and this small reentrant corner re-
sults in the pressure rise at t a 0.08 as. A 71% difference between
the dashed and solid curves exists at this time. In Figure 28, the
first pressure rise of the dashed curve is due to the incident shock,
the second increase is due to the propagation of the high pressure seen
at cell 4' (Figure 27) along the smooth section of the stair-step wall
to cell S° , aid the final rise is due to the arrival of the final re-
flected shock propating from the vertex. In all the Figures 25-28, the
smaller magnitudes of the final pressure jumps and the steadier rise
along the stair-step boundaries may account for the smaller pressure
overshoots in the stair-step wall pressure curves than in those along
the smooth wall. The differences between the final pressure values
along the smooth and stair-step walls decrease as a function of time
due to the equilibration of the pressures in the vertex region. This phe-
nomenon is quite apparent in Figure 25.

Figures 29-32 compare the pressure-time histories at corresponding
positions along the smooth and stair-step walls for Shot 1. Figures 29-
32 are analogous to Figures 25-28 and similar coments are applicable.
The percentage differences are significantly smaller and the pressure
scales are more refined for this numerical simulation than for Shot 2.
In both Figures 29 and 30 the maxims deviation in the pressure values be-
fore peak pressure occurs is less than 7%. The marked increase in the
pressure values of the dashed curve at approximately t a .12 ms in Figure
31 is due to the corner at cell 41. The maxims pressure deviation near
this time is 14%. The numerically caused undershoot of the solid curve
in Figure 32 at t a 0.13 ms is absent in the dashed curve because a com-
pression wave caused by the high pressure region at cell 4' has traveled
along the smooth section of the stair-step wall to station 5'.

5. COMPARISON OF PRESSURE VALUES FROM EXPERIMENTS,
ANALYSES, AND NUERICAL SIMULATIONS

5.1. Experimental, Analytical and Numerical Peak Pressure
Values at the Vertex.

The experimental pressure values at the vertex are compared with the
analytical and numerical results in Figures 33 and 34. In the experi-
ment, a rarefaction wave originates at the leading edge of the wedge.
propagates along the wall's surface and ultimately lowers the pressure
at the vertex. This expansion wave is absent in the analytic model and
the DORF simulation because of their infinite wedge assumption. Con-
sequently, the experimental peak pressure value is compared with the
final pressure values from the analytical model and for corner cell I in
the DORF simulation (see Figure 14). In the DORF results pressure oscil-
lations are produced by the numerical simulation of the shock waves. A
single comparable pressure value was obtained from the pressure history
in cell 1 by a least squares fit to a constant.
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For Shot 2 (Figure 33), the peak experimental value is 1.8195 ±
O.08S9 N4Pa, the analytic value is 1.8913 bWa, and the least squares
value from the DORF results is 1.4406 ?4Pa. The analytically computed
pressure is 3.95 larger than the experimental value and is within the
experimental error. The DORF value differs by -20.82% from the experi-
mental value and by -23.83% from the analytical value. The pressure
value from the analytic model should be the largest, because the as-
sumption of an inviscid gas does not allow any viscous effects. Vis-
cous forces which dissipate the pressure are present in the experi-
ment. Although the DORF simulation assumed an inviscid gas, the numeri-
cal method in DORP introduces diffusion which is effectively an implicit
artificial viscosity. In the determination of the type of reflection
which occurs at the first reflection point for Shot 2, the quantities
#0 = 40o and Po/Pi a 0.4168 generated a point Just below the curve #c
in Figure S. The close comparison of the analytic and experimental
values indicates that the past history of the flow did not affect the
reflection process.

The comparison of the experimental value with both the analytical
and the DORF results for Shot 1 is given in Figure 34. The experimental
pressure peak value at the apex is 154.58 ± 2.69 kPa. The analytical
pressure value is 165.44 kPa. The least squares straight line fit of
the DORF pressure values is 151.97 kPa. Consequently, the analytic
pressure value is 7.03% larger than the experimental value, and the
DORF value is 1.69% smaller. The DORF value is 8.14% smaller than the
analytic value. The relative position of the three values is the same
as in Figure 33. However, contrary to the results for Shot 2, the DORF
results for Shot I provide better approximations to the experimental
values than do the analytical values.

5.2. Experimental and Analytical Peak Pressure Duration Values.

A comparison of the experimental measurements with the analytic
approximations to the peak pressure duration for a finite length re-
entrant corner can be made when we combine the peak pressure duration
results from Sections 2 and 3.3 into Table 6.

Table 6. Peak Pressure Duration Data From Experiments and Analytic
Model.

Designation Experimental Analytical
Value Value

Shot 1 131±7 ps 135.78 us

Shot 2 22±5 us 17.06 us
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The analytical values are within the measurement errors for the experi-
mental peak pressure duration values. The experimental value of 22 Ps
is an estmate of the duration, because the experimental pressure pulse
on the oscilloscope was extremely short.

5.3 Analytical and Numerical Pressure Results Within an Infinite
Corner.

The characteristics of the pressure history will vary at different
positions throughout the flow field according to the analytic model de-
veloped in Section 3. For example, at a position along a wall forming %
1000 corner, the ambient pressure is initially increased to the pressure
behind the first reflected shock (see Figures 6 and 8) and then by the
returning final reflected shock (see Figure 7 or 9). For a position
along the plane of symmetry, the situation is different. The ambient
pressure is initially increased by the incident shock (see Figure 6
or 8), then by the first reflected shock's reflection and lastly by the
final curved shock (see Figure 7 or 9). Because both the DORF calcula-
tion and the analytic model simulate the gas flow within an infinite
reentrant corner, their results are comparable. The comparisons are
made between the analytic results and the DORF data at cells 1, 4, 30,
and 31 shown in Figure 14.

Figures 35-38 compare the DORF results (solid curve) with the ana-
lytic calculations (broken curve) for Shot 2. The short duration of the
analytically determined pressure plateau behind the first reflected
shock in Figure 35 is the result of the 5 - distance from the cell-
center of cell 1 to the vertex. This highly transient plateau is lost in
the numerical simulation probably because each shock is smuared over
several cells. The final DORF least squares fitted pressure values are
over 23% lower than the analytic values, and this trend persists, as is
shown in Figures 36, 37 and 38. Figure 36 shows that at cell 4 the DORF
values indicate the pressure plateau behind the first regular reflected
shock wave. However, the duration of this constant pressure value is
considerably shorter than the analytically determined plateau. Away
from the edges of the pressure plateau, the DORF pressure values are
within 9% of the analytic value. Because this same plateau exists for
a longer period in cell 4 than in cell 1, a comparison of Figures 35
and 36 indicates that highly transient results are less likely to be
accurately calculated by DORF, at least using the present computational
flow field grid, than those of a pseudo-steady or steady nature. The
pressure histories along the plane of symmetry (cell 30) and just off
the plane of symmetry (cell 31) are depicted in Figures 37 and 38,
respectively. Because the speed of the final curved reflected shock
along the plane of symmetry is not known from the analytic model, the
arrival time of that shock at any given position can not be determined.
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Hence, the initiation of the final pressure plateaus in Figures 37 and
38 can not be identified. The constant pressure value behind the second
reflected shock in Figure 37 is only slightly suggested by the DORF
results. The discrepancy between the results is most likely due to the
close proximity of cell 30 to the stair-step corner combined with the
different incident angle along the stair-step wall. At cell 31 the
effect of each reflection which is predicted by the analytic study can
be seen in the DORF results. Although the arrival time of a given shock
and the duration of the associated pressure plateau are not accurate, the
distinct constant pressure values associated with regular reflection are
near the analytic values. As before, the pressure values behind the Mach
reflection do not compare as well as do those behind regular reflection.
Because the DORF code solves a finite difference approximation to the
inviscid compressible flow equations rather than the simple equation of
the analytic model, Figure 38 verifies the analytic model at least quali-
tatively.

The pressure histories for Shot I calculated by the DORF code and
the analytic model are compared in Figures 39-42. These figures are
analogous to Figures 35-38 and many of the previously stated features
are the same. The scaling used in Figures 39-42 is considerably differ-
ent from that used in Figures 3S-38 and care must be taken in comparing
these sets. In Figure 36, the pressures from the DORF calculation and
the analytic model behind the first reflected shock seem to compare more
favorably than in Figure 40, at first glance. However, the opposite is
true. For Shot 1, the difference is 4.7% and for Shot 2 the difference
is 5.6%. Figure 39 shows the steady increase of the DORF pressure values
at cell 1 from the ambient to the final peak value. The highly transient
pressure plateau predicted by the analytic model is again not simulated
in the DORP calculation. As discussed in Section 5.1, the analytic
value is 8% higher than the least squares fit of the DORF values. This
difference is approximately the same in Figures 40-42. Figures 40-42
show the pressure histories farther down the smooth boundary, on the plane
of symmetry, and off the plane of symmetry, respectively. The durations
of constant pressure other than those initially prescribed are not dis-
cernable in these figures. The DORF values in the intermediate pressure
plateaus of Figures 40 and 41 have maximum variations of 4.7% and 7%,
respectively, from the analytic values. In Figures 36 and 37 (Shot 2),
the corresponding percentages are 5.6% and 8.7%, respectively. Figure
42 shows a monotonic rise in the pressure and no correspondence with the
pressure plateaus.

6. CONCLUSIONS

Shock tube experiments which simulate symmetrically placed shock
waves propagating into a 100' reentrant corner were performed and the
pressure histories at the corner's vertex are presented. These experi-
ments are simulated by an analytic model and by the DORF hydrodynamic
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computer code. Two experiments having incident shock strengths of

P1/Po 2.3699 (Shot 2) and P1/P = 1.1231 (Shot 1) are simulated by both

the analytic model and numerical calculations.

A detailed description of the analytic model, which excludes real
gas effects, is given. The sole restriction of the analytic study on
this corner's vertex angle and incident shock strength is that complex or
double Mach reflections do not occur within the corner. Thus, the model
is widely applicable. Because a criterion for the type of reflection
(regular and simple Mach) at each reflection point is given, the procedure
indicates when the model is applicable. The mathematical techniques
used in the model are simple: Galilean transformations and a method to
solve a nonlinear system of algebraic equations. When the final reflected
shock is not diffracted, the model calculates the exact solution of the
entire flow field within an infinite corner, or the exact solution of
the flow field near the vertex in a finite corner until the rarefaction
wave approaches the vertex. When the final reflected shock is diffracted,
the model provides an estimate of the peak vertex pressure value which is
shown to be within 7% of the experimental shock tube data. For a finite
corner, a formula is derived to estimate the duration of the peak pres-
sure value at the vertex. The delineation of the corner into distinct
regions by the model is verifiable by the DORF computer code simulations.
Because of its predictive capabilities, the model could be used as an
aid to experimental design and as a benchmark problem for hydrodynamic
computer codes.

The ntmerical results are for a single computational mesh size.
The effects of a different mesh size on the DORF results are not ad-
dressed in this report. The quantitative results for Shot I are signi-
ficantly better than for Shot 2. For example, the peak vertex pressure
value computed by DORF was less than 2% smaller than the experimental
value for Shot 1 but close to 21% smaller for Shot 2. The primary fea-
ture of the DORF simulation is the use of the rigid stair-step boundary
to form one of the infinite straight walls forming the 1000 reentrant
corner and a reflecting smooth boundary to form the other wall. The
initial placement of the incident shock in the numerical simulation was
such that the shock traverses a stair-step corner before reaching the
vertex. This stair-step corner acts like a small reentrant corner.
Therefore, the flows adjacent to the smooth and stair-step walls were
significantly different from one another. The DORF code results quanti-
tatively demonstrate the differences. The pressure profiles adjacent to
the stair-step wall and smooth wall for several times and the pressure
histories at corresponding positions along the walls were compared. It
was found that the calculated pressures for Shot 2 at comparable smooth
versus stair-step wall positions differ from one another by at least
20% and at particular positions and times up to 82%. However, these
percent differences were significantly lower for Shot 1, being at most
9.2%. The comparisons showed that only after the final reflected shock
passes a given cell do the pressures in corresponding cells on the two
walls begin to equilibrate. The time needed for the convergence to the
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same pressure value depends on the strength of the involved shocks.
Consequently, the accuracy of any type of transient pressure calculations
is strongly dependent on shock strength and position, and also the way
in which the walls are formulated in the computational grid. Even for
cells away from the stair-step corner, the pressure results may deviate
by 80%. Hence, care must be taken in the interpretation and use of
pressure results from a calculation involving stair-stepping to simulate
a smooth plane inclined at an angle to an oncoming shock. Alternatives
to stair-stepping (e.g. the utilization of partial rigid cells to model
inclined surfaces or techniques for generating body conforming coordi-
nate system) are highly recommended.

The pressure histories from the analytic model and DORF simulations
are compared along the smooth boundary, and on and off the plane of
symmetry. Qualitatively, the agreement between the DORF and analytic
results for Shot 2 is much better than that for Shot 1. Some of the
pressure plateaus predicted by the analytic model are also indicated by
the numerical results. In particular, each of the cascading constant
pressure regions predicted by the analytic model can be seen in the
numerical calculation near the plane of symetry (see Figure 38). How-
ever, the smearing of the shocks by the DORF code results in the distor-
tion of some shock arrival times and in elimination of some pressure
plateaus. The small amplitude oscillations in the computation for Shot
1 combined with the numerical diffusion in the computational grid make
it difficult to conclusively identify a pressure plateau in the numeri-
cal results. Quantitatively the agreement between the DORF and analytic
results for Shot 1 is better than that for Shot 2. For example, the
numerical pressure value behind the Mach reflection in Shot 2 differs
from the analytic value by 24%, while the percent difference between
the numerical and analytical results for Shot 1 is at most 8%. In gen-
eral, the results show that DORF models regular reflection significantly
better than Mach reflection for the flow situations modeled and compu-
tational grid used.
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APPENDIX A

DERIVATION OF THE OBLIQUE SHOCK RELATIONS

Consider a planar discontinuity (a shock frat S propagating in an

inviscid fluid with velocity w. See Figure IA.

REGION "REGION a

Figure 1A. A Propagating Planar Discontinuity.

The outward unit normal vector and unit tangential vector at any
point Q on S are n and t, respectively. The fluid properties immediately

ahead of the shock wave are denoted by the subscript a and those immedi-
ately behind by the subscript b. The velocity in the laboratory coor-
dinate system, density, pressure and specific internal energy of the

gas are v, p, P, and I, respectively. By applying a standard control
volume argument around an arbitrary position of the discontinuity and
by using the principles of conservation of mass, momentum, and total

11energy of the discontinuity, we obtain (see Thompson Section 7.2 or

Courant and Friedrichs12 Sectio, 5.4)

Pb(vbwj -"a a" • - 0, (Al)b " c, Lw
Pb " P a a- b nA2)

95

- Bu



2 
v!2

Ob T ) (Vb"') " ( a~'a 2 a- " (M3)

= a , (P a n)  V b " (P b" (

respectively. To derive the normal momentum and tangential velocity
equations of the oblique shock relations, we add to equation (A2) the
quantity (-w) times equation (Al) and obtain

b( Vb- )(Vb - ) " - w - ia ) " = (P -Pb)i" (A4)

bvw(vw -n a a a a Pb)

The scalar product of equation (A4) with n yields the conservation of
normal momentum:

r4 ~ 2 4.42 p 2P bLv bw a a ) " n]  = (P aP b). (AS)

The scalar product of equation (A4) with the unit tangent vector at Q
combined with equation (Al) yields the continuity of tangential veloc-
ity:

4. 40 4 4.
vb • t = va t (A6)

The usual form of the conservation of energy equation for the

oblique shock relations is obtained by adding +Pb(Vb-W) •-4 4. _+ -41

P a( a-w) - n to both sides of equation (A3) and using equations (Al)

and (A4) with the definition of specific enthalpy h = I + (PIp). The
result is written as

2 v 2
b a(hb + _) - (ha + --) = w 0 b b a (A7)

Using equation (A6), we rewrite equation (A7) as

[hb ( r) - [ a + ( ) (V b..Va)" (AS)

Equations (Al), (AS), (A6) and (AS) are commonly known as the oblique
shock relations and are valid at any point Q on the discontinuity S.
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For reference, we can rewrite equation (A7) as

hb 2 (V b b ~2b 2 *

or

1 2 1 2
hb +2 (vb w) h (v a - w) 0. (A9)

Using equation (A6), equation (A9) reduces to

h [.- " ha [(a- w " nJ= 0. (AIO)
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APPENDIX B

EXPLICIT FORMULAS FOR OBLIQUE SHOCK CALCULATIONS

We derive the explicit formulas from the equation system (3.1.5)
through (3.1.8) as follows. We multiply equation (3.1.6) by the quantity

L._* .- , use equation (3.1.5) and obtain

_(p - Po) [ 11 + ] O.S[u2 sin2 *oo2  u1
2 sin 2 (*O . 0l)] . (B1)

Rewriting equation (3.1.8) in terms of pressure and density instead of
enthalpy, we have

-j P - PO 0.5 [u02 sin2 *0 _ u2 sin2(# _ - 1)] (B2)

We equate the left hand sides of equation (B1) and (B2). Multiplying
the resulting equation by the ratio p1/P OP we obtain the density in

region 1 in terms of y, P1/P0 and 00:

P=01 (

1  o +-  1 + - (B3)

The ratio of equations (3.1.5) and (3.1.7) is

P1 tan (0O - el) = p0 tan 00. (B4)

From equation (B4), the deflection angle 01 can bd expressed as

01= O - tan "1 [00 tan 0)/Ol] • (BS)

The velocity magnitude in region 0 can be expressed in terms of the
quantities u1, *O and 01 from equation (3.1.7)

u0 a u1 cos(#O - el)/(cos #O).. (B6)
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Using equation (6), we can rewrite equation (3.1.6) as

(PI - P o)/coS (4o - 0) a " 2 UI tan (00 " e- + Po tan2 0]" (07)

Using equation (BS), we rewrite equation (37) as

U1  +1I - PO POj sin (0- i) (18)

By solving equations (13), (BS), (38), and (16) in order and by apply-
ing the perfect gas relations hI a yP1/ [(y-l)p 1] , T Pl/(R-p,), and

a, . (yP1/Pl) , we obtain all the values of the flow variables in the
intersection of region 1 and a neighborhood of the reflection point Q.
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LIST OF SYMOLS

a - sound speed (n/s)

cp a specific heat at constant pressure (J/(kg.K))

cv  - specific heat at constant volume (J/kg.K))

d - distance from the corner's apex (m)

dai n = minimm dimension of a cell (mn)

d Z distance defined by equation (3.3.1) (m)P

d - distance rarefraction wave travels in tw (a)

dw  = length of wall forming a finite cormer (a)

E = specific total energy (J/kg)
-s 2g = gravitational acceleration (m/s )

h - specific enthalpy (J/kg)

I = specific internal energy (J/kg)

n - unit outer normal vector

P = absolute pressure (Pa)

Q a point at which shock reflection occurs

R = gas constant (J/(kg. K))

S - surface of discontinuity

T = temperature (K)

t - unit tangential vector

t ,t a defined by equations (3.3.2) and (3.3.3), respectively (s)

1w  = time taken for incident shock to traverse d. (s)

u - velocity vector in the shock-fixed coordinate system

v - velocity vector in laboratory coordinate system• V y. (a/Is)

w shock wave velocity vector (a/s)

Z - triple point in the Mach reflection configuration

A x  a step size in the x direction (m)

AS a step size in the y direction (mn)
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At - time stop selected by DORF code (s)

Ax a computational cell size in the x direction (m)

Ay a computational cell size in the y direction (m)

y w ratio of specific hosts a Cp/cv

8 a reentrant corner angle variation from 90" ()

n = Courant-Priedrichs-Lewy stability factor

ei - deflection angle of the incmng velocity as it passes
through a shock into region i ( )

a w  = angle a wall makes with the horizontal (0)

v,x a kinematic and bulk viscosity coefficient, respectively, (Pa-s)

p a density (kg/a 3 )

T - host transfer coefficient (w/(a.K))

#B a incident angle of initial shock along the smooth wall (0)

- the incident angle of the velocity in region i at the shock

front (0)

#L = incident angle of initial shock along the stair-stop wall (*)

x a trajectory angle of the triple point in Mach Reflections ()

Subscripts

a denotes gas flow variables ahead of the shock

b denotes gas flow variables behind the shock

F denotes the gas flow variables in the last region

i denotes region i, i1,2,3,4,S

0 denotes initial region or region 0

Operators

Ix - curl operator

I. * divergence operator

I = gradient operator
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